
MEMO Python pour ECG

Lycée KLEBER

On commence ce document par les modules qui sont nécéssaire à chaque programme, puis on développera les
commandes nécessaire(exigible) pour le programme ECG approfondi en suivant le même ordre que le cours.

1 Les modules
Les instruction

from nom_du_module1 import * #importe tous les éléments du module1
import module2 as mod2
from module3 import sous_module as smod

Pour la deuxième méthode, les fonctions du module2 devront être appelées par

mod2.fonction().

On l’utilise pour ne pas qu’il y ait d’écrasement d’autres fonctions, pour ne pas encombrer l’espace des noms. Pour
les sous modules, on fera

smod.fonction().

Voici les principaux modules :
• math : pour importer les fonctions mathématiques usuelles et certaines constantes usuelles comme π (pi).
• numpy : pour utiliser le type array (tableau dont les éléments sont tous du même type, pratique pour les

vecteurs, les matrices).
• scipy : outils nécessaires au calcul matriciel. Il contient un sous-module qui nous servira pour la partie

aléatoire.
•numpy.random :le sous module, dédié aux simulations de variables aléatoires.
• matplotlib : pour générer des graphiques.
Le début de chaque script (programme) commencera donc de la façon suivante :

from math import *
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stat

On importe la bibliothèque numpy.random en écrivant l’une ou l’autre des instructions suivantes

from numpy.random import *
import numpy.random as rd

On utilisera la deuxième importation pour ce document.

1

2 Commandes de base

Action scripte en python Sortie
Types de variables - fonctions de conversions

Type int, nombre entier N=760 760
Converti si possible un décimal

int(15.3) 15ou texte en entier
Type float, nombre décimal X=3.76 3.76
Convertit si possible un entier

float("-11.24e8") -1124000000.0ou texte en décimal
Chaine de caractères , définie

y="-11.8" "-11.24e8"en la délimitant par des " "
Convertit un nombre en chaîne str(3.76) ’3.76’
Type boolean Logique ne prend

b=(2*3==6) Trueque deux valeurs : True et False
Liste : list L =[1,’a’,-13],L[0] [1,’a’,-13],1
Ensemble : set S={18,’a’,3},S[1] {1,2,3},’a’
p-uplet : tuple T=(-4,’a’,17), T[2] (-4,’a’,17),17

Tableaux ou matrice : array M=np.array([[1,2,3],[4,5,6]])
array([[1, 2, 3],
[4, 5, 6]])

Affectation, implémentation, ...
Assigner ou affecter x = a Stocke la valeur de a en x
Assignation (multiple) permutation a, b = 0, 1 Pareil que a = 0 et b = 1

Incrémenter ou implémenter x+ = a ou bien x = x+ a Affecte à x la valeur de x+ a

Décrémenter x− = a ou bien x = x− a Affecte à x la valeur de x− a

Afficher (sortie écran) print(”Bonjour”)
Affiche seulement le mot :
Bonjour

Entrée donner par l’utilisateur age = input(”Quel age as tu?”)
On affecte à la variable age

la valeur donner par l’utilisateur
Type d’une variable type(variable) Renvoie le type de la variable
Catalogue des variables dir(variable) Renvoie les fonctions, les listes ...

Commentaires #
Le reste de la ligne après # est un
commentaire

Aide en ligne help(commande) Renvoie à l’aide

Remarque : La conversion d’un objet en un autre type se fait de la façon suivante :
nouveau=nouveautype(ancien)

2

3 Opérations usuelles et opérateurs logiques.

Action scripte en python Sortie
Opérations classiques

Addition : + x = 2+ 5 x = 7

Multiplication :* y = 3 ∗ 6 y = 18

Puissance : ** z = 4 ∗ ∗2 z = 16
Division décimale : / t = 27/2 t = 13.5
Quotient de la division

q = 27//2
q = 13 : on affecte à q le quotient de

euclidienne : // la division euclidienne de 27 par 2
Le reste de la division

r = 27%2
r = 1 : on affecte à rle reste de

euclidienne : % la division euclidienne de 27 par 2
Opérateurs logiques et de comparaison

supérieur x > y ou x >= y
Renvoie True si x > y ou x = y

False sinon

inférieur x < y ou x >= y
Renvoie True si x < y ou x = y

False sinon

Egalité x == y
Renvoie True si x = y

False sinon

Différent x!=y
Renvoie True si x ̸= y

False sinon
L’opérateur disjonction ’ou’

P or Q
Renvoie True si et seulement si
l’un au moins est vraie ;

L’opérateur conjonction ’et’ P and Q
Renvoie True si et seulement si
les deux propositions sont vraie ;

Opérateur négation not P
Renvoie True si P est faux
Renvoie False si P est vraie

Opérateur appartient a in Li
Renvoie True si a appartient à
la liste Li. False si a appartient
à la liste Li

Entrées, sorties console, opérations numériques
Entrée input()

lit un texte saisi au clavier . Renvoie
toujours une chaîne de caractères.

Conversion possible en nombre
n=int(input(’n=’))

affiche n= dans la console
entier par int() et affecte l’entier donnée par

l’utilisateur à la variable n
Conversion possible en nombre

x=float(input(’x=’))
affiche x= dans la console

entier par float() et affecte le réel donnée par
l’utilisateur à la variable x

Remarque : On peut aussi utiliser la fonction eval()pour les conversion : x=eval(input(’x=’))

Sortie en console print(’La valeur est ’,x)
affiche en console : la valeurs est
puis le contenu de la variable x
en les séparant par une tabulation.

Il est possible d’avoir des sortie graphique à l’aide des fonctions plot, bar et hist qu’on verra dans
la partie graphique de ce document.

3

4 Généralité des listes/tableaux

Action Scripte en python Sortie
Longueur d’une liste len([1,2,’a’]) 3

Ajouter un élément à la
L.append(a)

Aout de l’objet a en
fin de la liste. On affecte fin de liste L
à L la liste [1,2,4,’a’]

Rajouter à une liste un élément L.append(4)
Rajoute 4 la fin de la liste
et renvoie [1,2,’a’,4]

Concaténer deux listes L+[-17] [1,2,’a’,4,-17]
Répéter une liste 2 fois 2*[-3,’b’] [-3,’a’,-3,’a’,-3,’a’]
Expulser un élément L.pop() Expulse le dernier élément de L

Trier L.sort() Trie L par ordre croissant
Symétrie centrale L.reverse() Inverse les éléments de la liste

Tester l’appartenance 1 in [1,2,3] ou 5 in [1,2,3] True ou False
Extraction de la tranche L[i:j] [L[i], ... , L[j-1]]
Extraction de la tranche

L[i:j:p]
De même de p en p à partir

avec un pas p de L[i], tant que i+k*p < j

Format tableau L.shape
renvoie un tuple qui contient
(nbre lignes, nbre colonnes,...)

Extraction :Liste=
Liste[0:3] [0,1,2]

[0,1,2,3,4,5]
Extraire tableau 2d

a[0:2,0:2] [[1,2],[4,5]]Liste=array([[1,2,3],
[4,5,6]])

Compter l’apparition
Liste.count(-3) 2 : le nombre d’occurence (-3)d’une occurence

Liste=[-3,-3,17,14]
Maximum d’une liste max(liste) max([-3,-3,17,14]) 17
Minimum d’une liste min(liste) min([-3,-3,17,14]) -3

Créer une copie de L L1=L.copy() Crée un nouveau pointeur L1
L’indice d’un élément

L.index(a)
Position de la première

dans une liste occurrence de a
Insertion d’un élément a

L.insert(i,a)
Insertion de l’objet

dans la liste L a en position i
Générer liste d’entiers range(6) Renvoie la liste [0,1,3,4,5]
range(a,b) →Ja, bJ range(6,9) Renvoie [6,7,8],non pas le dernier

Exemple linspace(0,10,5) array([0.,2.5,5.,7.5,10.])
Liste définie en compréhension

[expr for element in Liste formée des valeurs expr quand element parcourt
iterateur if condition] iterateur Optionnel : if condition. Seuls les éléments

vérifiant la condition sont insérés dans la liste.
[i for i in range(10)

Python renvoie 99K [0,3,6,9]
if i%3==0]

[expr for el1 in it1 Où l’on peut mettre plusieurs itérateurs
for el2 in it2...]

[i**j for i in range(1,4)
Python renvoie 99K [1,1,2,4,3,9]

for j in range(1,3)]
Conversion L → tableau reshape(liste,(3,2)) L a 6 éléments → tableau 3 x 2

4

5 Matrice ou tableau en appelant le module Numpy
En important le module Numpy de la façon suivant import numpy as np on peut écrire les instructions du

tableau ci-dessous. Ne pas oublier de précéder les instruction par np.

Action Scripte en python Sortie

Générer subdivision de [a, b] np.linspace(a,b,n)
Renvoie un vecteur ligne de n

valeurs régulièrement espacées entre
a et b : l’espace entre les valeurs

np.array(L)
V=np.array([1,2,-1])

Pour construire un array, où L est
une liste. V est vecteur ligne

Unidimensionnel à 3 composantes
Bidimensionnel A=np.array([[1,2-1],[2,3,-6]]) Matrice 2 lignes, 3 colonnes
np.array(L,int),

np.array([1,2,-1.5],int)
Pour imposer le type des

éléments de l’array et renvoie
np.array(L,float) array([1, 2, -1])

Dimension d’une matrice T
len(T)

Nombre d’éléments de T
si unidimensionnel, nombre

à l’aide de la fonction len de ligne si bidimensionnel.
Dimension d’une matrice T à

shape(T)
Renvoie le format de A

l’aide de la fonction shape
sous forme d’un tuple

(nb_ligne,nb_colone).
Copier une matrice np.copy(T) Réalise une copie de T

Extraction

V[i] Elément de V en position i.

A[i,j]
Elément de A en position (i,j).

Attention le premier
élément a pour indice 0.

A[i1:i2,j1:j2] A[2:4,3:5]

Renvoie les éléments de A
compris entre les indices de
ligne i1 et i2-1 et indices
de colonnes j1 et j2-1.

Autres règles [i:j:p] pour indices par pas de p, i : tous les indices à partir de i, :j tous les indices jusqu’à j
Matrices et vecteurs prédéfini

Vecteur contenant les entiers de
np.arange(5,10) array([5, 6, 7, 8, 9])

m à n− 1 np.arange(m,n)
vecteur nulle à n composantes :

np.zeros(4) array([0,0,0,0])
np.zeros(n)

Matrice nulle d’ordre n× p
np.zeros((2,4))

array([[0., 0., 0., 0.],
np.zeros((n,p)) [0., 0., 0., 0.])

Vecteur de n,composantes égaux
np.ones(3) array([1., 1., 1.])à 1 : np.ones(n)

ou matrice d’ordre n× p
np.ones((2,3))

array([1., 1., 1.],
np.ones((n,p)) [1., 1., 1.])

Matrice identité d’ordre n× n
np.eye(2)

array([1., 0.],
np.eye(n) [0. 1.])

Matrice diagonale dont la diagonale
np.diag(np.array([1,2]))

array([1., 0.],
est V : np.diag(V) [0. 2.])

5

6 Opérations sur les matrices
Pour tester les opérations matricielles nous choisirons les matrices suivantes :

A =

(
9 −3
−4 5

)
, B =

(
2 4
6 −8

)
et X =

(
9
5

)
Nous écrirons les matrices A et B, sur Python de la façon suivant :

import numpy as np
A= np.array([[9, -3],[-4, 5]]);B=np.array([[2, 8],[6, -8]]);X=np.array([[9],[5]])

Action Scripte en python Sortie
Additionner terme à terme, les

A+B
array([[11, 5],

éléments d’une matrice(tableau) [2, -3]])
Produit matriciels, lorsque

np.dot(A,B)
array([[0, 96],

cela est possible [22, -72]])
Le produit A.X renvoie une matrice

np.dot(A,X)
array([[66],

colonne
(

9
5

)
[-11]])

Produit terme à terme des élément A*B
array([[18, -24],

[-24, -40]])
Multiplier les coefficient de

a*B
array([[6, 24],

la matrice A par un réel a : a*A [18, -24]])
Pour concaténer deux matrices,

np.concatenate((A,B))

array([[9, -3],
par défaut verticalement [-4, 5],

(l’une en dessous l’autre) [2, 8],
[6, -8]])

Pour concaténer deux matrices,
np.concatenate((A,B),axis=1)

array([[9, -3, 2, 8],
horizontalement(l’une à côté l’autre) [-4, 5, 6, -8]])

Applique la fonction cos,sin,ln
np.exp(A)

array([[8.10308e+03, 4.97e-02],
exp ... à tous les éléments d’une [1.8315e-02, 1.4841e+02]])matrice A (et autres fonctions)

Inverse la matrice A np.linalg.inv(A)
array([[0.15151515, 0.09090909],

[0.12121212, 0.27272727]])

Résout le systèmeAY = X np.linalg.solve(A,X)
array([[1.81818182],

[2.45454545]])
Déterminant d’une matrice A np.linalg.det(A) 33.000000000000014

Rang d’une matrice A np.linalg.matrix_rank(A) 2
Trace d’une matrice np.trace(B) -6

Transposée d’une matrice A.transpose()
array([[9, -4],

[-3, 5]])

Puissance 3ème de A linalg.matrix power(A,3)
array([[1005, -489],

[-652, 353]])
Les valeurs propres d’une matrice A,

np.linalg.eigvals(A) array([11., 3.])retourné sous forme d’un vecteurs.
Sortie de vecteur formé des valeurs

np.linalg.eig(A)

(array([11., 3.]),
propre et la matrice constituée de array([[0.83205029, 0.4472136],
valeurs propre associés dans l’ordre [-0.5547002 , 0.89442719]]))
de ce dernier(matrice de passage)

6

Commandes générales fonctions

Action Scripte en python Sortie
Fonctions usuelles log, exp,cos, sin,

log : logarithme népérien,
exp : fonction exponentielle, ...

La constante π pi 3.141592653589793
La partie entière inférieur floor(5.7)
La partie entière supérieur ceil(5.2) 6
La valeur de edonnée par : e 2.718281828459045
valeur absolue abs(-3) 3
sqrt sqrt(16) 4

Bloc de condition
Instruction conditionnel1 Si x est égal à 0 alors on
if condition : if x==0: rajoute1 à x

conclusion x=x+1 Fin de l’instruction
Instruction conditionnel2 if x==0: Si x est égal à 0 (test)
if condition : x=x+1 alors implémente x de 1

conclusion 1 else : sinon
else : x=x-1 décrémente x de 1

conclusion 2 Fin de condition
Instruction conditionnel 3 if x%3==0: Si le reste de la division
if condition 1 : r=0 euclidienne est 0, alors r=0

conclusion 1 elif x%3==1: sinon Si le reste de la division
elif condition 2 : r=1 euclidienne est 1, alors r=1

conclusion 2 else : sinon r=2
else : r=2 Attention à l’indentation et les :

conclusion 3 la fin de la ligne de if, elif et else
Boucles for et while

Boucle for lorsqu’on connait les u=0.5 La boucle calcul les n terme de
bornes (le nombre des itérations) for i in range(n+1): la suite (un) définie par u0 = 0, 5
for i in: u=0.5*u*(u-3) et un+1 = 0, 5un(un − 3),

instructions print(n) #ici on est en affiche un, Attention à
... #dehors de la boucle for l’indentation et les deux

à la fin de la ligne de for
Boucle while lorsqu’on a une u=0.5 ; n=1 Cette boucle calcul le nombre
condition réalisable, pour while u<2.32: d’itérations n nécessaire, pour
que la boucle s’arrête u=0.5*u*(u-3) que un soit supérieur à 2.32,
While condition : n=n+1 puis affiche n.

instructions print(n) Attention à l’indentation et
... # print(n)est en dehors de les deux points à la fin de la ligne

la boucle for de while
Déclaration d’une fonction : def suite(n,a): La fonction suite calcule et
def nomfct(arg1,arg2,...): u=0.5 affiche le nème terme la suite

Instruction 1 for i in range(n+1): (un)n sachant que a et n
... u=a*u*(u-3) sont données par l’utilisateur.

return sort1,sort2,... return u suite est le nom de
#ici on est en dehors la fonction. aet n sont les
de la fonction arguments de la fonction suite

7

7 Probabilité : simulation de variables aléatoires
Nous avons besoin, pour les simulations de variables aléatoires, à importer les bibliothèques et libraires néces-

saires à chaque situation :
numpy() et numpy.random de la façon suivante :

from numpy.random import *
import numpy.random as rd

Action Scripte en python Sortie
Simule la loi uniforme continue U ([0, 1[) rd.random() 0.0733833
Simule r réalisations de la loi U ([0, 1[) rd.random(3) array([0.664, 0.996, 0.0422])
rd.random([r,s])simule r×s

rd.random([r,s])
array([[0.143, 0.031, 0.027],

réalisations de la loi U ([0, 1[) [0.941, 0.942, 0.307]])
sous la forme d’une matrice deMr,s(R).

L’instruction rd.random()<=p
rd.random()<=0.3 Trueenvoie un booléen qui prend la valeur

True ou False
L’instruction rd.random(r)<=p

u=rd.random(3)<=0.3 u=array([False,False,False])
envoie le vecteur u de r composante
booléen, qui prennent la valeur
True ou False
Le nombre de booléens qui ont pris

np.sum(u) 0la valeur True (True =1 et False=0).
Calcul de la moyenne des booléens

np.mean(u) 0(ou proportion) qui ont pris
la valeur True dans u
rd.randint(n)simule la loi

rd.randint(3) 1uniforme sur J0, n− 1K avec n ∈ N.
rd.randint(a,b)simule la loi

rd.randint(3,9) 4uniforme sur Ja, b− 1K avec a < b.
rd.randint(a,b,c)simule la loi

v=rd.randint(1,9,3) v=array([8, 7, 5])uniforme sur Ja, b− 1K avec a < b et
renvoie un vecteur de c composantes.
rd.randint(a,b,[m,n])simule la loi

M=rd.randint(4,16,[2,3])
M=array([[12, 4, 13],

uniforme sur Ja, b− 1K avec a < b et [8, 4, 6]])
renvoie une matrice d’ordre m× n.
rd.binomial(n,p) simule la loi

rd.binomial(10,0.2) 3binomiale B(n, p) renvoie le nombre de
succès réalisés au bout de n lancers.
rd.binomial(n,p,nb_exper)

rd.binomial(10,0.2,5) array([2,2,3,1,2])
renvoie un vecteur de nb_exper
composantes . Chaque composante
suit la loi binomiale B(n, p) .
rd.binomial(n,p,[r,s])

rd.binomial(10,0.2,[2,3])
array([[1, 2, 0],

renvoie une matrice d’ordre r×s [1, 0, 2]])
rd.geometric(p) simule la loi

rd.geometric(0.2) 12géométrique G(p).

8

8 Probabilité : simulation de variables aléatoires (suite)

Action Scripte en python Sortie
rd.geometric(p,n)

rd.geometric(0.2,4) array([3,3,2,3])
renvoie un vecteur de n

composantes . Chaque composante
suit la loi géométrique G(p).
rd.geometric(p,n,[r,s])

rd.geometric(0.2,4,[2,3])
array([6, 27, 4],

renvoie une matrice d’ordre r×s [9, 2, 1]])
rd.poisson(lambda)simule

rd.poisson(5) 12la loi de Poisson P(λ).
rd.poisson(lambda,n)

rd.poisson(5,3) array([5,7,2])
renvoie un vecteur de n

composantes . Chaque composante
suit la loi de Poisson P(λ).

rd.poisson(lambda,[r,s])
poisson(5,[2,3])

array(4, 8, 8],
renvoie une matrice d’ordre r×s [9, 1, 6]])
(b-a)*rd.random()+a simule

3*rd.random()+1
renvoie 2.5046708

la loi uniforme continue U ([a, b[) suivant la loi U ([1, 4[)
rd.uniform(a,b)simule aussi

rd.uniform(1,4) 2.7676609la loi uniforme continue U ([a, b[)
rd.exponential(1/a)

rd.exponential(0.5) 0.065381763497simule la loi exponentielle
E(a) de paramètre a > 0
rd.exponential(1/a,n)

rd.exponential(0.5,3)
array([0.29, 0.045, 0.065])

renvoie un vecteur de n
composantes . Chaque composante renvoi un réel suivant la loi E(2)suit la loi exponentielle E(a)
rd.exponential(1/a,[r,s]) rd.exponential(0.5,[2,3]) array([[0.083, 0.700],
renvoie une matrice d’ordre r×s [0.935, 0.287]])

rd.gamma(v) simule la loi
rd.gamma(2) 6.1792773164424gamma γ(v) de paramètre v > 0

rd.gamma(2,[2,3,4]) array([5.43,3.83,2.34]))
rd.gamma(v,vecteur) renvoie
un vecteuur de n composante
Chaque composante suit la loi

gamma : γ(v)
rd.normal(m,sigma) simule

rd.normal(5,0.1) 4.984441772221091la loi normale N (m,σ2)
de paramètres m ∈ R et σ > 0.
rd.normal(m,sigma,[r,s])

rd.normal(5,0.1,[2,3])
array([[4.89029953, 4.93447703],

renvoie r × s simulations de la loi [5.13218965, 4.91476433]])
normale de paramètresm et σ2.

rd.normal() simule la loi rd.normal() 1.1143096924632871
normale centrée réduite.

rd.permutationl() simule
rd.permutationl(1,2,3,4]) array([1, 4, 2, 3])la loi normale centrée réduite.

9

9 Représentation graphiques
Nous avons besoin dans cette partie de la bibliothèque matplotlib.pyplot que l’on importera ainsi :

import matplotlib.pyplot as plt

Lorsqu’on souhaite représenter graphiquement une fonction ou une suite à la main, il nous faut un tableau de
valeurs ; autrement dit, les valeurs de f(x) (ou un) pour un certain nombre de valeurs de x (ou de n).

9.1 Représentations graphiques en dimension deux

pour a, b ∈ R et n ∈ N,la commande np.linspace(a, b, n) crée un tableau de n valeurs équiréparties de a à b
inclus.

pour a, b, p ∈ R, la commande np.arange(a, b, p) crée un tableau de valeurs de a inclus à b exclu avec un pas de
p. Voici la structure ainsi que la syntaxe pour obtenir la courbe d’une fonction :

x = liste des abscisses
y = liste des ordonnées
plt.plot(x,y)
plt.show()
#Les listes des abscisses et des ordonnées peuvent être soit du type numpy.ndarray, soit du type list...

Exemple 1

Programme pour représenter la fonction f : x 7−→ xe−x2 sur l’intervalle [−1, 5]

import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(−1,5,100)
y=x∗np.exp(−x)
plt.plot(x,y)
plt.show()

Les commandes qui suivent ne sont pas exigibles à l’écriture, mais elles peuvent parfois servir :
• plt.grid() : fait apparaître une grille sur le fond du repère
• plt.axis(’equal’) : rend le repère orthonormé
• plt.axis([a,b,c,d]) : restreint le repère entre les abscisses a et b et les ordonnées c et d
• plt.plot(x,y,label="nom de la courbe")
• plt.plot(x,y,’couleur’), où couleur désigne la couleur voulue (ou son initiale)
• plt.legend() : affiche la légende

Exemple 2

import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(-1,5,100)
y=x∗np.exp(−x∗∗2)
plt.plot(x,y, label="Courbe de f")
x=np. linspace (0.01 ,5 ,100)
y=x∗np.log(x)−x+1
plt.plot(x,y, label="Courbe de g")

10

plt.title("Courbes de f et g")
plt.legend()
plt .show()

9.2 Représentations graphiques de suites

Pour représenter une suites, nous considérons que les abscisses des points sont des entiers naturels et ces points
serons représentés par des symboles + ou *... par exemple.

plt.plot(x,y,’+’) # marque les points avec des +
plt.plot(x,y,’o’) #marque les points avec des o

On souhaite représenter les termes de la suite (un) définie par :{
u0 = 1

∀n ∈ N, un+1 =
√
1 + un

On commencer par créer une fonction permettant les calculs des termes de (un)n puis créer une liste d’abscisses
et une liste d’ordonnées :

import numpy as np
import matplotlib . pyplot as plt
def u(n):

U=1
for k in range(1,n+1):

U=np.sqrt(1+U)
return U

x=range(0,11)
y=[u(n) for n in range (0 ,11)]
plt.plot(x,y,’+’)
plt.show()

9.3 Diagramme en bâtons des probabilités théoriques et histogramme

9.3.1 Définition.

Si x et y sont des vecteurs de même taille, plt.bar(x,y) trace le diagramme en bâtons d’abscisse x et d’ordonnée
y.

9.3.2 Définition.

Si x est un vecteur contenant une série statistique et c un vecteur contenant les classes choisies, la commande
plt.hist(x,c) dessine l’histogramme associé à la série statistique x triée selon les classes définies par c.

9.3.3 Méthode. Comment tracer le diagramme en bâtons des fréquences ?

Pour tracer le diagramme des fréquences d’un échantillon x (qu’on suppose à valeurs entières), on procède ainsi :
(i) on décide des modalités m1 < m2 < · · · < mk qu’on souhaite représenter ;
(ii) on définit les classes c = (m1 − 0, 5 < m1 + 0, 5 < m2 − 0, 5 < m2 + 0, 5 < · · · < mk − 0, 5 < mk + 0, 5) ;
(iii) on dessine l’histogramme (le « diagramme en bâtons des fréquences ») à l’aide de la commande :

plt.hist(x,c,density=’True’,edgecolor=’k’,color=’...’, label="...")

11

où l’on a ajouté les options de tracé suivantes (non exigibles) :
• normalisation des rectangles (la surface totale vaut 1) : density=’True’
• contours des rectangles en noir : edgecolor=’k’
• couleur des rectangles : color=’...’ (mettre le nom de la couleur en anglais)
• légende associée à chaque histogramme : label="..." (mettre la légende choisie)

Remarque. Pour réaliser plusieurs graphiques dans une même fenêtre et ainsi pouvoir mieux les comparer, on peut
utiliser l’instruction plt.subplot(n,m,k) avant chaque instruction de tracé de graphique, qui découpe la fenêtre
graphique en n ligne et m colonnes, k indiquant le numéro de la colonne souhaitée pour chaque graphique.(Voir
exemple cours en 2ème année)

10 Représentation graphique d’une fonction de deux variables.
Le graphe d’une fonction de deux variables (x, y) 7−→ f(x, y) définie sur un ouvert U est la surface Sf de l’espace

formée de tous les points M

 x
y

f(x, y)

 lorsque (x, y) décrit U .

Afin de représenter une fonction de deux variables à l’aide de Python, nous aurons besoin d’importer les librairies
suivantes :

import numpy as np # que vous connaissez très bien
import matplotlib.pyplot as plt

Nous aurons également besoin de la fonction Axes3D de la librairie mpl_toolkits.mplot3d, qu’on importe de la
façon suivante :

from mpl_toolkits.mplot3d import Axes3D
ax=Axes3D(plt.figure())

10.1 Définition.

Soient x, y des vecteurs de taille respective n et m. L’instruction

X,Y = np.meshgrid(x,y)

permet de construire le maillage ((xi, yj))(i,j)∈J1,nK×J1,mK. Pour tracer la représentation graphique de f sur[a, b]×[c, d],
on procèdera comme suit :

• On crée deux vecteurs x et y découpant les intervalles [a, b] et [c, d] en n petits intervalles de même longueur
comme suit :

x=np.linspace(a,b,n)
y=np.linspace(c,d,n)

• On crée ensuite un maillage ((xi, yj))1≤i,j≤ndu domaine [a, b]× [c, d] avec la commande :

X,Y = np.meshgrid(x,y)

• On trace avec l’instruction :

ax.plot_surface(X,Y,f(X,Y))
plt.show()

12

10.2 Exemple

Soit la fonction f définie sur : [−1, 1] par f : (x, y) 7−→ x× y .

n=21
def f(x,y):

return x*y

On créer un maillage ((xi, yj))1≤i,j≤n du domaine D = [−1, 1]× [−1, 1] par les instructions de la définition 1.2
puis représenter la fonction sur le domaine D de la façon suivante

x=linspace(-1,1,n)
y=x
X,Y =np.meshgrid(x,y)
ax.plot_surface(X,Y,f(X,Y),cmap=’jet’)
plt.show()

• Les commandes plt.contour(X,Y,f(X,Y),N) ou plt.contour(X,Y,f(X,Y),T) tracent les lignes de niveau
de la fonction f

• La commande plt.quiver(X,Y,dX,dY) trace en chaque point (X[i], Y [j]) du plan le vecteur de coordonnées
(dX[i], dY [j]) pour tout (i, j) ∈ J1, nK × J1,mK.

• On utilise plt.quiver(X,Y,dX,dY) pour tracer le vecteur gradient ∇f(xi, yj) en Python.
• Pour plus de détaille suu ses deux derniers points, voir le cours sur les fonctions à plusieurs variables(Feuille

5) .

Vos observations :

13

